Spherical Harmonics Reveal Standing EEG Waves and Long-Range Neural Synchronization during Non-REM Sleep
نویسندگان
چکیده
Previous work from our lab has demonstrated how the connectivity of brain circuits constrains the repertoire of activity patterns that those circuits can display. Specifically, we have shown that the principal components of spontaneous neural activity are uniquely determined by the underlying circuit connections, and that although the principal components do not uniquely resolve the circuit structure, they do reveal important features about it. Expanding upon this framework on a larger scale of neural dynamics, we have analyzed EEG data recorded with the standard 10-20 electrode system from 41 neurologically normal children and adolescents during stage 2, non-REM sleep. We show that the principal components of EEG spindles, or sigma waves (10-16 Hz), reveal non-propagating, standing waves in the form of spherical harmonics. We mathematically demonstrate that standing EEG waves exist when the spatial covariance and the Laplacian operator on the head's surface commute. This in turn implies that the covariance between two EEG channels decreases as the inverse of their relative distance; a relationship that we corroborate with empirical data. Using volume conduction theory, we then demonstrate that superficial current sources are more synchronized at larger distances, and determine the characteristic length of large-scale neural synchronization as 1.31 times the head radius, on average. Moreover, consistent with the hypothesis that EEG spindles are driven by thalamo-cortical rather than cortico-cortical loops, we also show that 8 additional patients with hypoplasia or complete agenesis of the corpus callosum, i.e., with deficient or no connectivity between cortical hemispheres, similarly exhibit standing EEG waves in the form of spherical harmonics. We conclude that spherical harmonics are a hallmark of spontaneous, large-scale synchronization of neural activity in the brain, which are associated with unconscious, light sleep. The analogy with spherical harmonics in quantum mechanics suggests that the variances (eigenvalues) of the principal components follow a Boltzmann distribution, or equivalently, that standing waves are in a sort of "thermodynamic" equilibrium during non-REM sleep. By extension, we speculate that consciousness emerges as the brain dynamics deviate from such equilibrium.
منابع مشابه
The septum modulates REM sleep-related penile erections in rats
Rapid eye movement sleep in males is characterized by penile erection along with EEG desynchronization, muscle atonia, ponto-geniculo-occipital waves, and rapid eye movements (REM). The central neural mechanisms regulating sleep related erections (SREs) are not known. Recently, the lateral preoptic area has been shown to contribute in sleep-related erectile mechanisms. The present study was con...
متن کاملThe septum modulates REM sleep-related penile erections in rats
Rapid eye movement sleep in males is characterized by penile erection along with EEG desynchronization, muscle atonia, ponto-geniculo-occipital waves, and rapid eye movements (REM). The central neural mechanisms regulating sleep related erections (SREs) are not known. Recently, the lateral preoptic area has been shown to contribute in sleep-related erectile mechanisms. The present study was con...
متن کاملSlow EEG rhythms and inter-hemispheric synchronization across sleep and wakefulness in the human hippocampus
Converging data that attribute a central role to sleep in memory consolidation have increased the interest to understand the characteristics of the hippocampal sleep and their relations with the processing of new information. Neural synchronization between different brain regions is thought to be implicated in long-term memory consolidation by facilitating neural communication and by promoting ...
متن کاملSleep-Dependent Oscillatory Synchronization: A Role in Fear Memory Consolidation
Sleep plays an important role in memory consolidation through the facilitation of neuronal plasticity; however, how sleep accomplishes this remains to be completely understood. It has previously been demonstrated that neural oscillations are an intrinsic mechanism by which the brain precisely controls neural ensembles. Inter-regional synchronization of these oscillations is also known to facili...
متن کاملEEG Signal based Sleep Detection using PCA and Neural Network
The electroencephalogram (EEG) is the most common tool used in sleep research. This unit describes the methods for recording and analyzing the EEG. Detailed protocols describe recorder calibration, electrode application, EEG recording, and computer EEG analysis with power spectral analysis. Computer digitization of an analog EEG signal is discussed, along with EEG filtering and the parameters o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2016